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Visual observations and numerical solutions of the flow equations have been used to study 
the flow between a rotating inner cylinder and a stationary outer cylinder. The annulus 
length is defined by stationary end walls and both concentric and eccentric cylinders are 
considered at Taylor numbers below the critical value. 

The numerical results show vortex motions to be present at very low subcritical Taylor 
numbers. The visual observations are consistent with the numerical solutions. 
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Introduction 

The flow between a rotating inner cylinder and a stationary 
outer cylinder, both concentric and eccentric, becomes centri- 
fugally unstable at a sufficiently high rotational speed. More 
precisely, instability occurs when the critical value, T c, of the 
Taylor number, T, is exceeded. The Taylor number is defined as 

2D~R~d 3 
T =  

v2(R1 + R2) 

and represents the ratio of centrifugal to viscous forces. The 
result of this instability is the appearance of contra-rotating 
toroidal vortices, known as Taylor vortices, superimposed on 
the basic flow. 

Theoretical predictions of Tc assume the annulus to be 
infinitely long, while experimental rigs are necessarily finite. 
Experimental determination is usually by flow visualization or 
by torque measurement, the appearance of Taylor vortices 
causing a sharp increase in the slope of the torque-speed curve. 
Many flow visualization studies have observed the presence of 
vortex motions at Taylor numbers considerably less than the 
theoretically predicted value of T=. Using aluminum paint 
pigment for flow visualization, Jackson, Robati, and Mobbs 1 
detected weak vortex motions between concentric cylinders at 
0.3To in an apparatus with a radius ratio of 0.908 and a 
length/gap ratio of 65. A sequence of different vortex motions 
occurred between 0.3To and To. A similar observation was made 
by Castle and Mobbs 2 for eccentric cylinders having a radius 
ratio of 0.9 and a length/gap ratio of 1130, using dye injection. 
Vortex systems appeared at values of T well below T c. The 
initial vortices were replaced by vortex cells of shorter axial 
length close to the expected value of To. Mobbs and Ozogan 3 
have shown that subcritical vortex motions have a considerable 
effect on torque, measured on the outer cylinder, at the higher 
end of the subcritical Taylor number range. At high eccentricity 
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ratios, this effect is sufficient to make the usual sharp increase 
in torque-speed slope at T¢ undetectable (see, e.g., Vohr4). 

In order to determine whether subcritical vortices are the 
result of annulus and effects, Preston 5 obtained numerical 
solutions to the flow equations for concentric cylinders, where 
the annulus length was determined by stationary end plates. 
His results showed the presence of vortex motions at low 
subcritical values of T, with the strongest vortex cells adjacent 
to the end plates. Similar numerical results have been obtained 
by De Roquefort and Grillaud 6 in the case ofend plates rotating 
with the inner cylinder. 

The current investigation extends the numerical work of 
Preston for concentric cylinders and also covers numerical 
solutions of the flow equations for eccentric cylinders with 
stationary annulus end plates. 

Basic equations 

For a steady, incompressible, isoviscous flow, the equations of 
motion and continuity are 

1 
V(~q2)-qx(Vxq)=--  Vp+v[V(V.q)-VxVxq] (1) 

P 

and 

V.q=0 (2) 
The boundary conditions for the velocities are the same in both 
concentric and eccentric cases. All the velocity components are 
zero at both cylinders except for the azimuthal component at 
the inner cylinder, which is equal to the inner cylinder surface 
speed. 

To eliminate the pressure term from Equation 1, two methods 
can be employed. The first involves the introduction of a stream 
function that satisfies the equation of continuity. The second 
method is the introduction of vorticity. Vorticity, to(l, ~/, O, is 
defined as: 

t a = V x q  (3) 

Taking the curl of Equation 1 causes the pressure term to 
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disappear. Taking the curl of Equation 3 then gives--in 
component form--six equations with six unknowns. This 
method has proved to be more successful in three-dimensional 
problems, where a stream function cannot be used (see, e.g., 
Dennis et al.7). 

When the cylinders are concentric, either method can be 
used. The governing equations in cylindrical polar coordinates 
and nondimensional form, using the first method, are 

2 <?l'k [<735 + -F  +A 
A <?z L <? r3 r2 <?r 7z L<?r <?z 2 r 7z2]  

-aP*+*-l[ o? +_, 2Av<?v 
L <?r r JL<?rZ <?z r <?r <?zJ L <?r r J <?z 3 r <?z 

1[<?~_1.2<730 3 <?20 3 <?0 30]  
+Rek<?r4 r Or 3 r 2 <?r 2 + r  3 <?r 

2A2 F <?~ .11 <?a o I<72$ l + 
Re L<?r: <?z ~ r <?r <?z ~ r ~ <?z ~ +Re <?~'I 

~0 (4a) 

and 

Ard,+#,la~l~_ : - I  .r<?v vl<?, 1 r<?zv 1 <?v ~I - - - - A  - - +  . . . . .  + . . . .  
L <?r r J <?z L <?r r J <?z ReL<?r 2 r <?r r~ J 

A 2 a2v 
. . . .  0 (4b) 

Re <?z 2 

Where the Reynolds number Re=Q~d2/v and the gap/length 
ratio A =d/l. The stream function is ~k(r, z), such that 

1 <?(rO) I <?(rO) 
u = - - - ,  and w = - - -  (5) 

r <?z r <?r 

and u, v, and w are the velocity components in the r, 0, and z 
directions, respectively. 

The boundary conditions are 

r/' + -+=o  
r=R1;  v= 1 - r / "  t3r r 

r=R2;  v=O, <?~+ #J-= 0 
<?r r 

and 
a~ t 

z = 0  and z=l;  v=0,  a ~ = 0  
<?z 

where r/' is the radius ratio R J R  2. 
Using the vorticity-momentum method, we obtain the 

following governing equations: 

<?r 2 

<?2u 

<?r 2 

<?2v 

<?r 2 

and 

<?2w 

<?r 2 

<?2ff <?~ 1<?~ ¢ a e { U ~ r + W  
2 <?~ ~ <?u <?wl 

<?r~-t-ff-z 2+ r ~ r 2 ~ z -  O r - ¢ ~ z ~  (6a) 

<?2r/ <?:r/ l <?r/ r~ _ ( <?r/ <?v_¢ <?v r/u" l +'¢-¢ 
<?r 2 <?z ~ r <?r r ~ ~ <?r <?z r <?r <?z r ) 

(6b) 

<?w <?wl 
- + w L¢_ (6c) - - - F ~ z 2  + r  Orr = l<elu <?r <?z 

<?2u 1 <?u u <?r/ 

- -  + ~ q r <?r r 2 -  <?z (7a) 

<?2v l<?v v <?( <?~ (7b) 
- - - F ~ z 2 + r  <?r--r~=<?r <?z 

<?2W 1 <?w 1 <? 
- - - F ~ z 2  + r  ~-r = - - r  <?S (rr/) (7c) 

The vorticity components are given by 

<?v <?u <?w and ~= l~ r ( rV  ) 
4= <?z' r/= <?z- <?r' r 

The boundary conditions are 

r/' 
r=Rx;  u = w = 0 ,  v = - -  4=0,  

l - r / "  

~W 
r=R2;  u = v = w = O ,  4=0,  r/= dr '  

z = 0  and z=l;  

<?W 
r/= dr '  

0v 

Or 

N o t a t i o n  

A Annulus gap/length ratio 
a Distance from 0 to P in bipolar coordinate system 

(Figure 1) 
A' Center of inner cylinder in bipolar coordinate system 
B' Center of outer cylinder in bipolar coordinate system 
C, Clearance ratio 
d Gap between cylinders when concentric 
h Lam6 coefficient 
l Annulus length 
p Pressure 
q Velocity vector 
Re Reynolds number 
R 1 Inner cylinder radius 
R2 Outer cylinder radius 
r Radial coordinate 
T Taylor number 
T c Critical Taylor number 
u Radial velocity 
v Tangential velocity 

w Axial velocity 
z Axial coordinate 

Greek letters 
ct Bipolar coordinate (Figure 1) 
cq Circle corresponding to inner cylinder in bipolar 

coordinate system 
% Circle corresponding to outer cylinder in bipolar 

coordinate system 
fl Bipolar coordinate (Figure 1) 

Eccentricity ratio 
r/ Radial vorticity component 
r/' Radius ratio, R J R  2 
0 Tangential coordinate 

Tangential vorticity component 
Axial vorticity component 

p Fluid density 
v Kinematic viscosity 
~, Stream function 
QI Inner cylinder rotational speed 
oJ Vorticity vector 
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Figure 1 The bipolar coordinate system; C,=0.25 and e=0.42 

and 

0v Ou 
u=/)=w=O; G= - ~ ,  ~t =~z, ~=0 

When the cylinders are eccentric, the problem is a three- 
dimensional one and, hence, the vorticity-momentum method 
is used (Dennis et al.7). An appropriate coordinate system is 
the bipolar system used by Ritchie 8 in his analysis of the flow 
between infinitely long eccentric cylinders. The transformation 
from Cartesian coordinates (x ,y ,z)  to bipolar coordinates 
(ct, B, z) is given by 

a sinh ct a sin B 
x c o s h c t - c o s B '  Y = c o s h c t - c o s B '  and z = z  

where a is the distance from the Cartesian origin O to the pole 
P of the bipolar system (see Figure 1). 

The Lam6 coefficients are found to be (h, h, 1), where 

a 
h= 

cosh c t -  cos fl 

It follows, using the transformation, that 

- a  - a  
R ~ -  , and R 2 -  

sinh ctx sinh ~2 

R2-R~  sinh ~ - s i n h  0(2 
Cr-- - - -  

R 2 sinh ~ 

and 

OB' -OA'  sinh(cta -~2)  

e= C sinh ~ - s i n h  G( 2 

Using this system of coordinates, we simply apply the 
boundary conditions: 

~=ctl;  U=w=O, 

1 0 
= ~  ~ (hv) 

ct = Gt2, U=V=W=0, 

1 0 
(= ~ ~ (h/)) 

q' 1 dw 
v= 1- i f '  ~=0, q= - h  0~ '  

1 0w 
4=o, ~ = - h  0~' 

and 

0v COu 
z = 0  and z=l; u=v=w=O, G=-Oz,  q=coz' 

if=0 
The governing equations for this case are 

1 CO2~ . 1 CO2 G 024 (coshct+cosB)~q 2 s i n h e 0 q  

h2 00~2 t- h2 ~ "~ COz 2 ah ah Off 

2 sin fl Oq_ Re~U- CO4 + v O~ + w O~_+ uq Oh G Ou 
ah Oct [h COs h O B 07, h 2 O B h Oc~ 

,Ou Ou Gv Oh t 
h COIl ( 637, h2 ~v)  (8a) 

1 02q 1 02r/ 02q (cosh~+cosB)  2s inh~04  
h2 COo, 2 t- ~ ~ + Oz 2 ah q 4ah dfl 

2sinBcoG ~ fu0q v0r/ 0t/ v¢0h G0v 

r I 0/) Ov qu COh t 
hOB ~ COz h2 ~ . I  

1 CO2~ 1 02~ 02~ 

=ReI'UCO~+_vco:+w0~ ¢0w ~lOw 
~h coct hOB COz h cos h cofl 

1 COZu 1 CO2u 02u (coshct+cosB) 

h 2 COCt2 ~- ~ ddB2 q Oz 2 ah u q- 

Oq 1 0( 

Oz h coil 

1 02/) 1 02/) 02/) (cosh c~+cos B) 

h2 &t z f-~ ~ ' ~  Oz 2 ah 
1) 

1 o~ oG 
h Oct COz 

and 

1 CO2w 1 CO2w CO2w 1 COG 4 Oh 10rl 
h2 00~2 t - ~ - ~  coz2-hO B ~ h 20 B hcos 

(8b) 

Isc  
Oz) 

2sinhctOv 2sinflOv 

ah Off ah Oot 

(9a) 

2 sinh ct 0u 2 sin B COu 
4 

ah Off ah Oc~ 

(9b) 

q Oh 
(9c) 

h 2 Oct 

M e t h o d  of solution 

Because the boundary conditions at z = 0 and z = l are the same, 
we can assume that the solution will be symmetrical about the 
half-annulus plane. Therefore further boundary conditions at 
z =/ /2 can be deduced, i.e., 

~u ~v 

Oz 8z 

and 

0Z 2 0Z 

Equations 4 and 6-9 can be written in finite-difference form 
using central differencing. The Gauss-Seidel iterative technique 
was used in solving the finite-difference form of the vorticity- 
momentum equations. The Newton-Raphson technique was 
applied to Equations 4, and the Gauss-Seidel technique was 
then employed to solve for the increment vector resulting from 
the application of the former method. 
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Figure 2a Subcritical vortex formation; T/T~=0.01, gap/length ratio 
=0.125, radius ratio=0.9, and 2 cells; values of stream function: 
~, = -0.001313, ~ =  -0.000788, and ~s= -0.0000263 

The boundary conditions for Equations 4a and 4b are simply 
applied even when first-order derivatives are needed on solid 
boundaries. The reason is that sufficient information is available 
to allow the use of nodal points, one mesh size beyond the 
boundaries, i.e., outside the solution space. 

The boundary conditions for the vorticity derivatives are not 
so simple to apply at solid boundaries. The information 
available is not sufficient to allow the use of nodal points outside 
the solution space. The boundary conditions for the first-order 
derivatives of the vorticities were therefore derived from the 
Taylor expansion series at nodal points one step and two steps 
away from the boundaries. An underrelaxation factor was 
necessary in the application of these boundary conditions. 

The matrices associated with the finite-difference form of 
Equations 7 and 9 are diagonally dominant, whereas those 
associated with Equations 6 and 8 may not be. Therefore an 
underrelaxation factor is used in solving Equations 6 and 8, 
whereas an overrelaxation factor may be used in solving 
Equations 7 and 9 to speed the convergence. 

N u m e r i c a l  a n a l y s i s  r e s u l t s  

The numerical solutions obtained for the concentric cylinder 
problem, employing the stream function, were for a radius ratio 
of 0.9, a Taylor number ratio T/T c of from 0.01 to 1.1, and 
aspect ratios of from 2 to 8. A typical streamline pattern in the 
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Figure2b Subcritical vortex formation; T/Tc=0.1 and 4 cells; 
values of stream function: ~k,=-0.00860, ¢==-0.00430, ~k3= 
-0.000258, ff4=0.000022, and ff6=0.000011 

r-z plane is shown in Figure 2. The tangential velocity distri- 
bution on inward and outward flow vortex cell boundaries are 
shown in Figure 3. The variation of number of vortex cells (i.e., 
the number of vortex cells in the flow domain) with the aspect 
ratio and Taylor number ratio T/T c is presented in Figure 4. 
Solutions for concentric cylinders obtained using the vorticity- 
momentum equations were for radius ratios of 0.8 and 0.9, 
T/T c ratios of from 0.1 to 0.3, and aspect ratios of from 2 to 8. 
A comparison between the results obtained by this method and 
those obtained by the former shows a similar variation in the 
number of cells with increasing Taylor number, only slightly 
slower when the radius ratio = 0.8. This is not surprising, as the 
value of the Reynolds number for a given T/To is smaller. Hence 
in Figure 5 we used the Reynolds number rather than T/T c to 
allow for the difference in the radius ratio. 

The numerical solutions obtained for the eccentric cylinder 
problem were for a radius of 0.8, T/T~ ratios of 0.1 and 0.2, 
aspect ratios of 2 to 6, and eccentricity ratios of 0.2 and 0.5. 
A solution was obtained for an eccentricity ratio of 0.001 to 
compare it with the concentric cylinder results. 

The results are presented by plotting the radial and axial 
velocity components for some selected planes. In any vertical 
plane the maximum velocity component is represented by 0.9 
of the distance between two adjacent mesh points. All other 
velocities in that plane are then normalized with respect to this 
maximum velocity. The distribution of radial velocity in the 
r-O plane at the mid-point of the annulus length is given in 

Int. J. Heat and Fluid Flow, Vol. 11, No. 1, March 1990 75 



Effect of end walls on subcritical flow: M. d. EI-Dujaily and F. R. Mobbs 

Upper Stationary Plate 

0 0 
0 X X 

O0 X x X 0 

X X 0 o 

o x x o 

o x x o 

o x x o 
x 

x q~l o 
0 X X X 0 

o o qu2 o 
o- 

[ ]  

v 0 O v  

v 0 O v 

v O0 O v 

0 
v On O v 

v t~ v 
v v 

o o: s - o?. 
0 

~' 0 0 a 

0 0 ~, 

~; O 0  0 ~' 
0 

~, 0 0 ~, 
0 

0 

Half Annulus Length 

Figure2c Subcritical vortex formation; T/To=0.6 and 6 cells; 
values of stream function: ~1 = -0 .026216 ,  ~2= -0 .008456 ,  @3= 
0.005920, ~ ,=0.001776,  ~ , =  -0 .001326 ,  and ~ , =  -0 .000398  

'~ 0'6 - 

~ 0"4- 

I (  [ . .  , , ,  

0"8- 

0-2- 

0 
0 '90 

"'~. ,. 

"... 

"..,,~4 Outward jet 

X "', 

"'., 0 
",.,x 

Inward jet ~ X  "',. 

"',, 

o.h o.h o& o.;B ~, 
D i s l a n c e  i n  t h e  r a d i a l  d i r e c l i o n  

Figure 3 Tangential velocity distributions on vortex cell boundaries; 
T/To=0.6, gap/length ratio=O.2, radius rat io=0.9,  and 4 cells 

Figure 6. The radial velocities are plotted in the circumferential 
direction with positive values in the same direction as the 
rotation of the inner cylinder, which is counterclockwise. 
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Experimental  invest igat ion 

Subcritical vortex mot ion- -and  sometimes supercritical Taylor 
vortex flow--were studied visually by the addition of aluminum 
flakes to the fluid. The annulus length was defined by two 
axially adjustable rings. These rings and the outer cylinder were 
stationary, and the inner cylinder rotated. Experiments were 
conducted on concentric cylinders with radius ratios of 0.8 and 
0.9 and on eccentric cylinders with a radius ratio of 0.8 and 
eccentricity ratios of 0.2 and 0.5. The annulus aspect ratio was 
varied by moving the rings axially. Two rigs were used for these 
experiments. Rig A has an aluminum shaft of diameter 57.15 mm 
and length 203.2 mm. The outer cylinder is made of perspex 
and has a bore diameter of 63.5 mm. Rig B has an aluminum 
shaft of diameter 72 mm and length 305 mm. The outer cylinder 
is made of glass and has a mean bore diameter of 89.39 mm. 
Rig B has a facility of eccentric operation. Figure 7 presents a 
schematic diagram of rig B. 

The experiments at a radius ratio of 0.9 had t h e a i m  of 
counting the number of cells in the subcritical region. The 
results of these experiments are compared with those of Figure 
4 in Figure 8. 

The experiments conducted on the rig with cylinders of radius 
ratio 0.8 examined the subcritical cell structure when the 
cylinders were both concentric and eccentric. The vortex 
activity was found to evolve in a manner similar to that depicted 
by the numerical analyses. For  example, at a radius ratio of 
0.8, an aspect ratio of 6, and T/T¢ =0.8 the end cell is 1.3 times 
longer than the adjacent cell, and at T/To=0.86 the end cell is 
1.2 times longer. 
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Discussion 

The numerical results for the concentric cylinder case show 
that subcritical vortices are present at very low Taylor numbers. 
Initially, the number of vortices is two, which is true for all the 
aspect ratios investigated. As the Taylor number is increased, 
the number of suberitical vortices increases by the addition 
of vortex pairs. As the already existing cells become stronger, 
a pair of contra-rotating vortex cells evolve on either side of 
the mid-annulus plane. This evolution of cell pairs appears to 
continue until the number of cells equals the greatest even 
integer equal to or less than the aspect ratio (Figures 2a-2c). 
The center of circulation of the subcritical cells is close to the 
inner cylinder and, in the case of the end cells, is close to the 
ends. In all cases the direction of circulation in the end cells is 
such that there is an inward radial flow near the end plates. 
This flow appears to be governed by a positive radial pressure 
gradient set up in the tangential flow away from the ends. The 
tangential velocity distributions deviate from the predicted 
distributions for infinitely long cylinders as the Taylor number 
is increased. When the cylinders are short, the tangential 
velocity gradients increase near the inner and outer cylinders 
at Taylor numbers below the critical. This accounts for the 
appreciable effect of subcritical vortices on the torque observed 
by Mobbs and Ozogan. 3 

In the eccentric cylinder case, the subcritical vortices evolve 
similarly. The solution obtained for the special case of eccen- 
tricity ratio 5=0.001 is in very good agreement with those 
obtained for the concentric cylinders problem. When the 
eccentricity ratio is increased to 0.2 and 0.5, while keeping all 
other variables constant, the solution ceases to be azimuthally 
symmetric. In fact, the cells change their direction of circulation 
over a considerable part of the region where the flow is diverging 
(Figure 6). For  an eccentricity ratio of 0.2, this reverse or 
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anomalous circulation appears some distance upstream of the 
narrowest gap, being initially confined to a region near the 
inner cylinder. The normal circulation reappears some distance 
upstream of the widest gap in a region close to the outer 
cylinder. Increasing the Taylor number or  the aspect ratio 
causes the changeover points to move closer to the narrowest 
and widest gaps, respectively. 

Benjamin and Muilin 9 have observed many cases of Taylor 
vortex flow for concentric cylinders in which the direction of 
vortex circulation was anomalous. Visual observations of 
subcritical vortices in the flow between eccentric cylinders by 
Castle and Mobbs 2 showed the presence, at the widest gap, of 
vortices near the inner cylinder, which did not extend to the 
outer cylinder. This condition implies the existence of contra- 
rotating vortices near the outer cylinder in keeping with the 
numerical solution. 

The numerical results for eccentric cylinders show the sub- 
critical vortices to have their strongest circulation at an angle 
of between 30 ° to 60 ° downstream from the widest gap. An 
interesting comparison is with the predictions of the nonlocal 
stability theory of DiPr ima and Stuart, 1° which show a 
maximum supercritical Taylor vortex activity at about 50 ° 
downstream from the widest gap. 

The experiments confirm the results of the numerical analyses. 
Initially, at a sufficiently low Taylor number, there are two 
vortex cells, symmetric about  the half-annulus plane, with their 
cores close to the end plates. This condition is true at all aspect 
ratios. As the Taylor number is increased, further pairs of cells 
evolve successively at the mid-annulus plane until the number 
of cells is generally equal to the aspect ratio. The results 
presented in Figure 8 show that in the experiments new cells 
appear to evolve at higher values of T/T c than predicted by the 
numerical solutions. The reason probably is that in the newly 
developed cells the circulatory motion is very weak. When the 
Taylor number is increased, these cells become more vigorous 
and eventually become sufficiently strong to be visually detected. 
The results of the experiments on the eccentric cylinders show 
that the center of circulation of the end cells tends to be near 
the corner between the inner cylinder and the end plate. Other  

cells in the annulus tend to have their centers near the inner 
cylinder. The changes in the axial length of the cells are similar 
in nature to the concentric cylinder case, except that the 
dependence here is on the average gap width rather than the 
local gap width. The phenomenon of anomalous circulation of 
the cells in the diverging region of the flow could not be 
confirmed experimentally because the circulation was too weak 
to determine its direction. 
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